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Muscle force–stiffness characteristics influence joint stability:
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Abstract

Background. The muscle force–stiffness relationship has often been modeled as linear, while in situ muscle research has clearly
demonstrated non-linearity. Estimation of rotational joint stability relies on both a muscle�s instantaneous pre-perturbation force
and stiffness. Under conditions of static equilibrium, a muscle�s stiffness will function in a stabilizing manner, while its force can
function in either a stabilizing or destabilizing manner depending on the muscle�s orientation about the joint.

Methods. A single muscle (rectus abdominis) was modeled and its individual direct stabilizing potential about the L4–L5 spine
joint was analyzed. Three force–stiffness relationships were examined: (1) linear; (2) non-linear with moderate stiffness magnitudes;
(3) non-linear with higher stiffness magnitudes.

Findings. With a linear force–stiffness relationship, stability increased proportional to muscle force; with a non-linear relation-
ship, stability peaked and subsequently decreased at submaximal muscle forces. When considering the lower, as opposed to the
higher non-linear stiffness magnitudes, the stabilizing potential of the muscle peaked at a lower muscle force level and actually
became negative (destabilizing) at a critical stiffness magnitude.

Interpretation. It was concluded that a non-linear muscle force–stiffness relationship greatly alters the individual stabilizing
potential of the muscle throughout its progression of force development. A muscle�s stabilizing contribution may actually peak
at and subsequently decrease above a critical submaximal force level. Incorporating this knowledge into stability models may assist
in recognizing unstable events that lead to injury at higher levels of muscle activation.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Rotational joint stability is primarily dependent on
the ability of the surrounding muscles to activate appro-
priately at any given instant in time. It is a highly
dynamic process involving a coordinated interaction
between all of the muscles supporting the joint. No sin-
gle muscle can be defined as most important in provid-
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ing stability, since the best stabilizer will migrate
among the many muscles contingent on the loading
and postural situation (Cholewicki and Van Vliet,
2002; Kavcic and McGill, 2004). Using an analogy of
a mast supported by guy wires, the geometry of the
guy wires determines the critical load just prior to buck-
ling. In a spine example, the orientation of muscles (guy
wires) about the joint has been identified as crucial in
determining its stabilizing potential (Potvin and Brown,
2005). These authors were able to mathematically sepa-
rate a muscle�s stabilizing contribution into two compo-
nents: (1) pre-perturbation tension; (2) pre-perturbation
stiffness. In a situation of static equilibrium, a muscle�s
stiffness will always serve to stabilize a joint; however,
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depending on muscular orientation, its pre-tension may
either stabilize or destabilize the joint. For a muscle�s
pre-tension to be destabilizing, its orientation must be
such that upon a small rotational perturbation, the
change in its length and moment arm will function to
further increase the net moment in the direction of the
applied perturbation. In our quest to identify the impor-
tant variables that determine spine stability, we were
motivated to assess the relative effects of estimates of
individual muscle force–stiffness relationships. Thus,
this short paper was designed to serve as a proof of prin-
ciple of the potential effect that a non-linear muscle
force–stiffness relationship may have on a muscle�s con-
tribution to joint stability–spine stability in this
example.

The overall stabilizing contribution of a muscle is
thus dependent on the magnitude of the relationship
between its force and stiffness. This relationship is
far from understood, but the prevailing theory is that
muscle force and stiffness in the contractile element
are produced by the cycling of cross-bridges as the
muscle contracts and relaxes (Huxley, 1957). While
this relationship is often modeled as linear, various
studies examining isometric and isokinetic muscle
force and stiffness have demonstrated a non-linear
relationship, with the steepness of the stiffness increase
degrading with increasing force (Joyce and Rack,
1969; Pousson et al., 1990; Ettema and Huijing,
1994). The majority of this degradation appears to
occur at lower force levels. Furthermore, additional
passive elastic, tendon, and reflexive stiffness compo-
nents further add to the non-linearity in the force–
stiffness relationship. Hoffer and Andreassen (1981)
showed that when accounting for the stiffness added
by force recruitment from reflexive pathways, muscle
stiffness appears to asymptote at approximately 25%
of maximum activation, thus producing a highly
non-linear relationship.

In mechanically quantified joint stability research, it
has generally been assumed that a muscle�s direct contri-
bution to stability increases with force and activation
and theoretically peaks at maximum force and effort.
This assumption is questioned however, when consider-
ing a non-linear force–stiffness relationship, as it
becomes possible for a critical point to exist in the mus-
cle force–stiffness spectrum at which the increase in
force becomes dominant over the increase in stiffness,
thereby potentially decreasing the muscle�s contribution
to joint stability. The purpose of this paper was to the-
oretically test this notion, by comparing the joint stabi-
lizing effects of a muscle with a linear force–stiffness
relationship to the same muscle after imparting a slight
non-linearity into the relationship. It is hypothesized
that any non-linearity in the force–stiffness relation-
ship will greatly modify the joint stabilizing effect of
individual muscles.
2. Methods

The effect of a single muscle�s activation on stability
(in this example, the rectus abdominis (RA)) about
the lateral bend (LB) axis of the L4–L5 spine joint in
upright standing was selected for analysis due to the rel-
atively large destabilizing potential of its pre-tension.
Origin and insertion coordinates, with respect to the
joint in question, as well as muscle cross-sectional area
(CSA) were taken from Cholewicki and McGill (1996)
(Table 1 and Fig. 1).

Activation profiles were simulated from 0% to 100%
of maximum and subsequent force profiles were calcu-
lated from the following equation:

F m ¼ CSAm � d �ActN ð1Þ
where Fm = muscle force (N); CSAm = muscle cross-sec-
tional area (m2); d = maximum muscle stress (in this
study = 350,000 N/m2) (chosen as a value representative
of those reported in the literature (Reid and Costigan,
1987)); ActN = coefficient: activation level non-linearly
normalized to maximum (as per Potvin et al., 1996),
using a constant (c) of 15 (chosen as a value representa-
tive of those found for other muscles (erector spinae,
Potvin et al., 1996; biceps brachii, Potvin and Brown,
2004)).

ActN ¼ 100 � eð%activation�C�0.001Þ � 1

eð�0.1�CÞ � 1
. ð2Þ

Muscle stiffness was calculated using the following equa-
tion from Bergmark (1989):

km ¼ q
F m

Lm

ð3Þ

where km = muscle stiffness (N/m); q = dimensionless
multiplier fitting the relationship between force and stiff-
ness; Fm = muscle force (N); Lm = muscle length (m).

Three stiffness profiles were examined: (i) a linear
force–stiffness relationship utilizing a q of 10 (case 1);
(ii) a non-linear force–stiffness relationship with q

decreasing non-linearly from 10 to 6.4 with force
increases at minimum and maximum forces, respectively
(case 2); (iii) a non-linear force–stiffness relationship
with q decreasing non-linearly from 30 to 19.2 (same
degree of non-linearity as case 2) with force increases
at minimum and maximum forces, respectively (case
3). These q values were selected to represent a span gen-
erally reported in the literature (Crisco and Panjabi,
1991; Cholewicki and McGill, 1995), and to replicate
the general form of the non-linear relationship (cases 2
and 3) between muscle force and stiffness seen in the
literature (Fig. 2).

The direct muscular contribution to stability was
calculated as per Potvin and Brown (2005). Briefly, the
potential energy stored in a muscle is a function of both
its pre-tension and stiffness



Table 1
Rectus abdominis (RA) origin and insertion coordinates (right side of the body) relative to the L4–L5 joint (x = lateral bend axis; y = axial twist axis;
z = flexion–extension axis), cross-sectional area (CSA), and geometric force (FG) and stiffness (KG) stabilizing components

Origin (m) Insertion (m) CSA (m2) FG KG

X Y Z X Y Z

RA .184 .050 .030 .190 .350 .070 .001 �.0584 .0026
L4–L5 .106 .211 .000 – – – – – –

FG and KG are calculated solely from the geometric components in Eq. 5 FG ¼ AzBzþAyBy�r2x
l ; KG ¼ r2x

� �
, with force and stiffness set to 1 N and N/m,

respectively. L4–L5 joint coordinates are shown as well.

Fig. 1. Approximate model location of the rectus abdominis muscle
and L4–L5 spine joint location from (A) right sagittal; and (B) anterior
views. (Courtesy Milad Ishac, Department of Kinesiology, University
of Waterloo, Canada).
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V m ¼ F mDlm þ 1

2
kmDl

2
m ð4Þ

where Vm = the sum of the energy stored and the work
done by, or on, the muscle (N m); Dlm = the change in
muscle length for a small rotation (m).

A muscle�s contribution to stability was quantified
as the second derivative of the muscle�s stored elastic
potential energy (Crisco and Panjabi, 1992), and thus,
after applying appropriate substitutions, yields

Smx ¼ F
AzBz þ AyBy � r2x

l

� �
þ kr2x ð5Þ

where Smx = a muscle�s stabilizing contribution about
the x-axis (lateral bend axis) of a joint; Ay, Az = muscle�s
origin coordinates (in the y and z-axes; axial twist and
flexion–extension axes, respectively) with respect to the
joint; By, Bz = muscle�s insertion or nodal coordinates
(in the y and z-axes; axial twist and flexion–extension
axes, respectively) with respect to the joint; rx = muscle�s
three-dimensional functional moment arm about the
x-axis; l = muscle length from its origin to its inser-
tion/nodal point.
3. Results

Both linear and non-linear force–stiffness relation-
ships were simulated for the RA muscle (Fig. 2). The re-
sults of the analysis of the muscle�s stabilizing
contribution to joint stability about the lateral bend axis
of the L4–L5 joint demonstrate that with a linear force–
stiffness relationship (case 1), stability always continues
to increase in its initial direction as force increases
(Fig. 3). In other words, if a muscle�s initial stabilizing
contribution is positive, then it will become more posi-
tive in a linear manner as it increases in force. However,
for the non-linear force–stiffness relationships simulated
here, the muscle�s stabilizing contribution peaks at
approximately 176 N of force for q�s ranging from 10
to 6.4 (case 2), which corresponds to 50% of maximum
force (Fig. 3); and peaks at approximately 325 N of
force for q�s ranging from 30 to 19.2 (case 3), which cor-
responds to 93% of maximum force (Fig. 3). Further-
more, in case 2, the overall effect of the muscle became
destabilizing at 92% of maximum force.
4. Discussion

The primary concept demonstrated in this proof of
principle study is that a muscle�s individual contribution
to joint stability may not necessarily peak at its maxi-
mum force output. Considering a non-linear relation-
ship between force and stiffness and a muscle whose
orientation is such that its pre-tension is destabilizing,
there may exist a critical force level at which any addi-
tional force increase becomes dominant over the corre-
sponding stiffness increase, thereby reducing the
muscle�s stabilizing potential. This paper served to theo-
retically test this principle.

Spine joint buckling has been well understood to
occur during ‘‘light’’ loading situations, such as picking
up a pencil from the floor or sneezing. This is a result of
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Fig. 2. The linear and non-linear force–stiffness relationships simulated for the RA muscle in cases 1 and 2, respectively.
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Fig. 3. Stabilizing contribution of the RA muscle about the lateral bend axis of the L4–L5 spine joint in upright standing. The muscle is simulated to
have either a linear (case 1) or non-linear (cases 2 and 3) force–stiffness relationship. Cases 2 and 3 have the same degree of non-linearity; case 3 has
magnitudes of stiffness three times greater than in case 2. The stabilizing contribution of the muscle is shown over the span of potentially generated
isometric forces in the upright standing position. Maximum stabilizing contributions occur at 100%, 50% and 93% of maximum force for cases 1, 2
and 3, respectively.
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low levels of activation in the trunk musculature sup-
porting the joints, leading to a relatively low stability
margin of safety (defined here as the change in external
load which would be required to make the system unsta-
ble), which can be surpassed by a sudden increase in
applied joint load. However, what has been less well
understood are buckling instances that occur under very
high loading conditions (i.e. Cholewicki and McGill,
1992), where the surrounding musculature is highly ac-
tive, and thus provides a great deal of support to the
joint. The apparent dichotomy in the muscle force–stiff-
ness relationship, and its effect on joint stability, may
provide an explanation for this phenomena. As muscles
generate force towards maximum, corresponding stiff-
ness increases taper off, thus reducing the stability mar-
gin of safety. Based on this, it appears possible that the
likelihood of joint buckling is lowest during moderate
loading conditions, and becomes higher as loading con-
ditions approach the minimum or maximum of the end
loading range.

The equation used here to calculate a muscle�s contri-
bution to joint stability (Potvin and Brown, 2005) is
valuable for its ability to separate the geometric contri-
butions of a muscle�s pre-tension and stiffness. The
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magnitude of these geometric components will depend
on the units of measure used in the calculation, and by
maintaining the corresponding units for the force and
stiffness calculations, one observes that the absolute
magnitude in these two measures becomes highly critical
in determining the stabilizing potential. For example, if
for a given force magnitude the corresponding stiffness
is high enough, the critical point where the pre-tension
becomes dominant over stiffness will not be reached.
Conversely, if the stiffness is decreased relative to the
force, it becomes possible that a muscle could actually
function in a destabilizing manner about a joint. This
has been previously identified by Shadmehr and Arbib
(1992), who stated that in order to maintain stability
about a single joint system, muscle stiffness must in-
crease at least linearly with force. However, it now must
also be noted that the magnitude of the relationship bet-
ween force and stiffness must be considered in determin-
ing whether a muscle functions in a stabilizing or
destabilizing manner.

The non-linear force–stiffness relationship simulated
in this study was developed in the form of the force–stiff-
ness profile identified for an areflexive (in the absence of
reflexive components) muscle complex. Hoffer and
Andreassen (1981) and Sinkjaer et al., 1988 both pro-
vided evidence for an even greater non-linear relation-
ship when accounting for spinal reflex modulation,
with stiffness leveling off between approximately 25%
and 50% of maximum activation, and subsequently
decreasing at higher activity levels. In this way, the mus-
cle modeled here may be conservative in the effect its
force–stiffness relationship would have on joint stability.
When considering the entire reflexive muscle complex,
peak stability potential may be higher than in the
absence of this reflexive component due to a higher peak
stiffness. However, the relative amount of degradation in
this stabilizing potential would also be greater, as force
would continue to increase in the absence of significant
stiffness increases above 25% activation. However, one
could also argue that reflexive muscular modulation is
irrelevant to analyses of mechanical stability, as true
mechanical stability is dependent solely on the instanta-
neous joint stiffness. Regardless, the non-linearity in the
force–stiffness relationship simulated in this study is rel-
atively minor, and thus thought to be representative of
the data reported for the muscle complex in the absence
of reflexes. Therefore the results can be interpreted as, at
the very least, a conservative demonstration of the
potential effect of this non-linear relationship on joint
stability.

The q values reported in the literature range from
approximately 0.5 to 50 (Crisco and Panjabi, 1991; Cho-
lewicki and McGill, 1995), with Crisco and Panjabi
(1991) determining an average of 10. The values utilized
in the current paper were chosen to represent those val-
ues reported in the literature. The q values in cases 2 and
3 had the identical degree of non-linearity with force;
however, the values in case 2 were chosen to represent
a span most often used in the analysis of muscle/joint
stability (Granata and Orishimo, 2001; Granata and
Marras, 2000; Brown and Potvin, 2005; Gardner-Morse
et al., 1995), while the q values in case 3 were chosen as a
comparison to demonstrate the stabilizing effect of dif-
fering q magnitudes. Interestingly, in case 2, the muscle
became destabilizing at 92% of maximum force, which
corresponded to a q of 6.79. Thus, in this situation, it
appears that a q of approximately 6.8 serves as a critical
point in the force–stiffness relationship at which this
muscle functions in a meta-stable fashion. With higher
q, and thus higher stiffness magnitudes, it was observed
that the force level at which the stabilizing potential of
the muscle peaked shifted closer towards its maximum
force. Furthermore, with these higher stiffness magni-
tudes, the muscle never reached a point in which its
destabilizing instantaneous force level became dominant
over its stabilizing stiffness level, and thus never func-
tioned in a destabilizing manner about the joint.

The current study examined only the direct stabilizing
effect of a single muscle on a single joint, and was not
designed as an exhaustive examination of the muscula-
ture acting about the lumbar spine. The intent of the
paper was to provide evidence that an individual mus-
cle�s stabilizing ability may become compromised at
high force levels. This potential exists for any muscle
whose orientation is such that its instantaneous tension
acts in a destabilizing fashion about a joint. Addition-
ally, it should be noted that the nature of the muscle
force–stiffness relationship differs depending on how
the force is generated. This study simulated only an iso-
metric force–stiffness relationship during which activa-
tion was ramped from 0% to 100%. Previous studies
have shown a similar magnitude of relationship in isoki-
netic conditions and in situations in which force was
modulated by altering muscle length, with the non-linear
relationship being demonstrated for each of these meth-
ods of force development (Ettema and Huijing, 1989,
1994). Therefore, it is felt that the simulation here is suf-
ficient to represent the potential effects of this non-linear
relationship on joint stability.
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